Involvement of stretch-activated Cl- channels in ramification of murine microglia.
نویسندگان
چکیده
A stretch-activated Cl- current (ICl) was investigated in cultured murine microglia using the whole-cell configuration of the patch-clamp technique. After application of membrane stretch, a Cl- current appeared within seconds, and its amplitude increased further within 3-8 min. ICl underwent rundown, which was prevented by addition of 4 mM ATP to the intracellular perfusing solution. The stretch-activated Cl- current exhibited outward rectification and did not show any voltage-dependent gating. Lowering the concentration of extracellular Cl- from 142 to 12 mM by equimolar substitution of Cl- with gluconate shifted the reversal potential of ICl by 41.6 +/- 1.8 mV in the depolarizing direction. 4, 4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) blocked ICl in a voltage- and time-dependent manner. At a test potential of +40 mV, a half-maximal blockade at 16.1 microM DIDS and at 71.0 microM SITS was determined for ICl. At a concentration of 200 microM, 5-nitro-2-(3-phenylpropylamino)benzoic acid or flufenamic acid blocked ICl by 88% and 75%, respectively. Each of these four Cl- channel blockers reversibly inhibited the ramification process of microglia, whereas blockers of voltage-gated Na+ and K+ channels did not affect the transformation of microglia from their ameboid into the ramified phenotype. It is suggested that in microglia functional stretch-activated Cl- channels are required for the induction of ramification but not for maintaining the ramified shape.
منابع مشابه
Ion channels in microglia (brain macrophages).
Microglia are immunocompetent cells in the brain that have many similarities with macrophages of peripheral tissues. In normal adult brain, microglial cells are in a resting state, but they become activated during inflammation of the central nervous system, after neuronal injury, and in several neurological diseases. Patch-clamp studies of microglial cells in cell culture and in tissue slices d...
متن کاملP 155: The Roles of Microglia in Neurodegenerative Diseases
Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...
متن کاملO27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme
Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملMicroglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by deficits in social interaction, difficulties with language and repetitive/restricted behaviors. Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) when they are activated in response to immunolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 18 شماره
صفحات -
تاریخ انتشار 1998